HCN4-like immunoreactivity in rat retinal ganglion cells.
نویسندگان
چکیده
Antisera directed against hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels bind to somata in the ganglion cell layer of rat and rabbit retinas, and mRNA for different HCN channel isoforms has been detected in the ganglion cell layer of mouse retina. However, previous studies neither provided evidence that any of the somata are ganglion cells (as opposed to displaced amacrine cells) nor quantified these cells. We therefore tested whether isoform-specific anti-HCN channel antisera bind to ganglion cells labeled by retrograde transport of fluorophore-coupled dextran. In flat-mounted adult rat retinas, the number of dextran-backfilled ganglion cells agreed with cell densities reported in previous studies, and anti-HCN4 antisera bound to the somata of approximately 40% of these cells. The diameter of these somata ranged from 7 to 30 microm. Consistent with localization to cell membranes, the immunoreactivity formed a thin line that circumscribed individual somata. Optic fiber layer axon fascicles, and the proximal dendrites of some ganglion cells, also displayed binding of anti-HCN4 antisera. These results suggest that the response of some mammalian retinal ganglion cells to hyperpolarization may be modulated by changes in intracellular cAMP levels, and could thus be more complex than expected from previous voltage and current recordings.
منابع مشابه
NMDA induces BDNF expression in the albino rat retina in vivo.
The effect of an intravitreal injection of NMDA on the expression of brain-derived neurotrophic factor (BDNF) in retinal ganglion cells was investigated in rats. Forty-eight hours after intravitreal injection of NMDA retinal ganglion cell BDNF immunoreactivity was practically obliterated, as was the choline acetyltransferase (ChAT) immunoreactivity associated with a subset of amacrine cells. Ho...
متن کاملImmunocytochemical characterisation of proteins secreted by retinal pigment epithelium in retinas of normal and Royal College of Surgeons dystrophic rats.
In a previous study, an antigen consisting of proteins secreted by retinal pigment epithelial (RPE) cells was injected into a sheep and the specificity of the resulting antiserum was shown by Western blotting and its effects on retinal development were determined in vitro and in vivo. In the present study, the distribution of these secreted proteins was determined by light microscopy immunocyto...
متن کاملStem Cells in Glaucoma Management
Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...
متن کاملChloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells
Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...
متن کاملModulation of the expression of the transcription factor Max in rat retinal ganglion cells by a recombinant adeno-associated viral vector.
Exclusion of the transcription factor Max from the nucleus of retinal ganglion cells is an early, caspase-independent event of programmed cell death following damage to the optic axons. To test whether the loss of nuclear Max leads to a reduction in neuroprotection, we developed a procedure to overexpress Max protein in rat retinal tissue in vivo. A recombinant adeno-associated viral vector (rA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Visual neuroscience
دوره 25 1 شماره
صفحات -
تاریخ انتشار 2008